15 research outputs found

    Differences in the distribution of stroke subtypes in a UK black stroke population - final results from the South London Ethnicity and Stroke Study.

    Get PDF
    BACKGROUND: Stroke incidence is increased in Black individuals but the reasons for this are poorly understood. Exploring the differences in aetiological stroke subtypes, and the extent to which they are explained by conventional and novel risk factors, is an important step in elucidating the underlying mechanisms for this increased stroke risk. METHODS: Between 1999 and 2010, 1200 black and 1200 white stroke patients were prospectively recruited from a contiguous geographical area in South London in the UK. The Trial of Org 10172 (TOAST) classification was used to classify stroke subtype. Age- and sex-adjusted comparisons of socio-demographics, traditional vascular risk factors and stroke subtypes were performed between black and white stroke patients and between Black Caribbean and Black African stroke patients using age-, sex-, and social deprivation-adjusted univariable and multivariable logistic regression analyses. RESULTS: Black stroke patients were younger than white stroke patients (mean (SD) 65.1 (13.7) vs. 74.8 (13.7) years). There were significant differences in the distribution of stroke subtypes. Small vessel disease stroke was increased in black patients versus white patients (27 % vs. 12 %; OR, 2.74; 95 % CI, 2.19-3.44), whereas large vessel and cardioembolic stroke was less frequent in black patients (OR, 0.59; 95 % CI, 0.45-0.78 and OR, 0.61; 95 % CI, 0.50-0.74, respectively). These associations remained after controlling for traditional vascular risk factors and socio-demographics. Black Caribbean patients appeared to have an intermediate risk factor and stroke subtype profile between that found in Black African and white stroke patients. Cardioembolic stroke was more strongly associated with Black Caribbean ethnicity versus Black African ethnicity (OR, 1.48; 95 % CI, 1.04-2.10), whereas intracranial large vessel disease was less frequent in Black Caribbean patients versus Black African subjects (OR, 0.44; 95 % CI, 0.24-0.83). CONCLUSIONS: Clear differences exist in stroke subtype distribution between black and white stroke patients, with a marked increase in small vessel stroke. These could not be explained by differences in the assessed traditional risk factors. Possible explanations for these differences might include variations in genetic susceptibility, differing rates of control of vascular risk factors, or as yet undetermined environmental risk factors.This work was supported by a Stroke Association (UK) Programme Grant (PROG 3) (www.stroke.org.uk) and the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London (http://www.guysandstthomasbrc.nihr.ac.uk). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. Loes Rutten-Jacobs was supported by a British Heart Foundation Immediate Research Fellowship (FS/15/61/31626) (www.bhf.org.uk). Hugh Markus is supported by an NIHR Senior Investigator award (www.nihr.ac.uk) and his work is supported by the NIHR Cambridge University Hospital Trusts Comprehensive BRC (www.cambridge-brc.org.uk)

    Genetic Study of White Matter Integrity in UK Biobank (N=8448) and the Overlap With Stroke, Depression, and Dementia.

    Get PDF
    BACKGROUND AND PURPOSE: Structural integrity of the white matter is a marker of cerebral small vessel disease, which is the major cause of vascular dementia and a quarter of all strokes. Genetic studies provide a way to obtain novel insights in the disease mechanism underlying cerebral small vessel disease. The aim was to identify common variants associated with microstructural integrity of the white matter and to elucidate the relationships of white matter structural integrity with stroke, major depressive disorder, and Alzheimer disease. METHODS: This genome-wide association analysis included 8448 individuals from UK Biobank-a population-based cohort study that recruited individuals from across the United Kingdom between 2006 and 2010, aged 40 to 69 years. Microstructural integrity was measured as fractional anisotropy- (FA) and mean diffusivity (MD)-derived parameters on diffusion tensor images. White matter hyperintensity volumes (WMHV) were assessed on T2-weighted fluid-attenuated inversion recovery images. RESULTS: We identified 1 novel locus at genome-wide significance (VCAN [versican]: rs13164785; P=3.7×10-18 for MD and rs67827860; P=1.3×10-14 for FA). LD score regression showed a significant genome-wide correlation between FA, MD, and WMHV (FA-WMHV rG 0.39 [SE, 0.15]; MD-WMHV rG 0.56 [SE, 0.19]). In polygenic risk score analysis, FA, MD, and WMHV were significantly associated with lacunar stroke, MD with major depressive disorder, and WMHV with Alzheimer disease. CONCLUSIONS: Genetic variants within the VCAN gene may play a role in the mechanisms underlying microstructural integrity of the white matter in the brain measured as FA and MD. Mechanisms underlying white matter alterations are shared with cerebrovascular disease, and inherited differences in white matter microstructure impact on Alzheimer disease and major depressive disorder

    Prevalence of CADASIL and Fabry Disease in a Cohort of MRI Defined Younger Onset Lacunar Stroke.

    Get PDF
    BACKGROUND AND PURPOSE: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), caused by mutations in the NOTCH3 gene, is the most common monogenic disorder causing lacunar stroke and cerebral small vessel disease (SVD). Fabry disease (FD) due to mutations in the GLA gene has been suggested as an underdiagnosed cause of stroke, and one feature is SVD. Previous studies reported varying prevalence of CADASIL and FD in stroke, likely due to varying subtypes studied; no studies have looked at a large cohort of younger onset SVD. We determined the prevalence in a well-defined, MRI-verified cohort of apparently sporadic patients with lacunar infarct. METHODS: Caucasian patients with lacunar infarction, aged ≤70 years (mean age 56.7 (SD8.6)), were recruited from 72 specialist stroke centres throughout the UK as part of the Young Lacunar Stroke DNA Resource. Patients with a previously confirmed monogenic cause of stroke were excluded. All MRI's and clinical histories were reviewed centrally. Screening was performed for NOTCH3 and GLA mutations. RESULTS: Of 994 subjects five had pathogenic NOTCH3 mutations (R169C, R207C, R587C, C1222G and C323S) all resulting in loss or gain of a cysteine in the NOTCH3 protein. All five patients had confluent leukoaraiosis (Fazekas grade ≥2). CADASIL prevalence overall was 0.5% (95% CI 0.2%-1.1%) and among cases with confluent leukoaraiosis 1.5% (95% CI 0.6%-3.3%). No classic pathogenic FD mutations were found; one patient had a missense mutation (R118C), associated with late-onset FD. CONCLUSION: CADASIL cases are rare and only detected in SVD patients with confluent leukoaraiosis. No definite FD cases were detected.The UK Young Lacunar Stroke DNA Study was funded by a grants from the Wellcome Trust (WT072952, www.wellcome.ac.uk) and the Stroke Association (TSA 2010/01& TSA 2013/02, www.stroke.org.uk). Fabry disease screening was supported by an unrestricted scientific grant from Shire Human Genetic Therapies (www.shire.com). The sponsors of the study had no role in the study design, data collection, data analysis, interpretation, writing of the manuscript, or the decision to submit the manuscript for publication. L R-J’s salary is funded by a Stroke Association/ British Heart Foundation grant. (TSA/BHF 2010/01). HM is supported by an National Institute for Health Research Senior Investigator award (www.nihr.ac.uk). HM and SB are supported by the Cambridge University Trust National Institute for Health Research Comprehensive Research Centre (www.cambridge-brc.org.uk).This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pone.013635

    Common NOTCH3 Variants and Cerebral Small-Vessel Disease.

    Get PDF
    BACKGROUND AND PURPOSE: The most common monogenic cause of cerebral small-vessel disease is cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, caused by NOTCH3 gene mutations. It has been hypothesized that more common variants in NOTCH3 may also contribute to the risk of sporadic small-vessel disease. Previously, 4 common variants (rs10404382, rs1043994, rs10423702, and rs1043997) were found to be associated with the presence of white matter hyperintensity in hypertensive community-dwelling elderly. METHODS: We investigated the association of common single nucleotide polymorphisms (SNPs) in NOTCH3 in 1350 patients with MRI-confirmed lacunar stroke and 7397 controls, by meta-analysis of genome-wide association study data sets. In addition, we investigated the association of common SNPs in NOTCH3 with MRI white matter hyperintensity volumes in 3670 white patients with ischemic stroke. In each analysis, we considered all SNPs within the NOTCH3 gene, and within 50-kb upstream and downstream of the coding region. A total of 381 SNPs from the 1000 genome population with a mean allele frequency>0.01 were included in the analysis. A significance level of P<0.0015 was used, adjusted for the effective number of independent SNPs in the region using the Galwey method. RESULTS: We found no association of any common variants in NOTCH3 (including rs10404382, rs1043994, rs10423702, and rs1043997) with lacunar stroke or white matter hyperintensity volume. We repeated our analysis stratified for hypertension but again found no association. CONCLUSIONS: Our study does not support a role for common NOTCH3 variation in the risk of sporadic small-vessel disease.Collection of the UK Young Lacunar Stroke DNA Study (DNA lacunar) was primarily supported by the Wellcome Trust (WT072952) with additional support from the Stroke Association (TSA 2010/01). Genotyping of the DNA lacunar samples, and Dr Traylor, was supported by a Stroke Association Grant (TSA 2013/01). Funding for the genotyping at Massachusetts General Hospital was provided by the Massachusetts General Hospital- Deane Institute for the Integrative Study of Atrial Fibrillation and Stroke and the National Institute of Neurological Disorders and Stroke (U01 NS069208). Dr Rutten-Jacobs was supported by a project grant from the Stroke Association/British Heart Foundation grant (TSA BHF 2010/01). Dr Adib-Samii was supported by a Medical Research Council (United Kingdom) training fellowship. Drs Markus and Bevan were supported by the National Institute for Health Research Cambridge University Hospitals Comprehensive Biomedical Research Centre. Dr Markus was supported by a National Institute for Health Research Senior Investigator award. Dr Thijs was supported by a Clinical Investigator Grant from the scientific research fund, Fonds Wetenschappelijk Onderzoek Flanders. Dr Rost was supported by a National Institute of Neurological Disorders and Stroke grant (R01 NS082285-01).This is the final published version. It first appeared at http://stroke.ahajournals.org/content/46/6/1482.long

    Accelerated development of cerebral small vessel disease in young stroke patients.

    Get PDF
    OBJECTIVE: To study the long-term prevalence of small vessel disease after young stroke and to compare this to healthy controls. METHODS: This prospective cohort study comprises 337 patients with an ischemic stroke or TIA, aged 18-50 years, without a history of TIA or stroke. In addition, 90 age- and sex-matched controls were included. At follow-up, lacunes, microbleeds, and white matter hyperintensity (WMH) volume were assessed using MRI. To investigate the relation between risk factors and small vessel disease, logistic and linear regression were used. RESULTS: After mean follow-up of 9.9 (SD 8.1) years, 337 patients were included (227 with an ischemic stroke and 110 with a TIA). Mean age of patients was 49.8 years (SD 10.3) and 45.4% were men; for controls, mean age was 49.4 years (SD 11.9) and 45.6% were men. Compared with controls, patients more often had at least 1 lacune (24.0% vs 4.5%, p < 0.0001). In addition, they had a higher WMH volume (median 1.5 mL [interquartile range (IQR) 0.5-3.7] vs 0.4 mL [IQR 0.0-1.0], p < 0.001). Compared with controls, patients had the same volume WMHs on average 10-20 years earlier. In the patient group, age at stroke (β = 0.03, 95% confidence interval [CI] 0.02-0.04) hypertension (β = 0.22, 95% CI 0.04-0.39), and smoking (β = 0.18, 95% CI 0.01-0.34) at baseline were associated with WMH volume. CONCLUSIONS: Patients with a young stroke have a higher burden of small vessel disease than controls adjusted for confounders. Cerebral aging seems accelerated by 10-20 years in these patients, which may suggest an increased vulnerability to vascular risk factors.This is the final version of the article. It first appeared from Wolters Kluwer via https://doi.org/10.​1212/​WNL.​0000000000003123

    Lower Ipsilateral Hippocampal Integrity after Ischemic Stroke in Young Adults: A Long-Term Follow-Up Study.

    Get PDF
    BACKGROUND AND PURPOSE: Memory impairment after stroke is poorly understood as stroke rarely occurs in the hippocampus. Previous studies have observed smaller ipsilateral hippocampal volumes after stroke compared with controls. Possibly, these findings on macroscopic level are not the first occurrence of structural damage and are preceded by microscopic changes that may already be associated with a worse memory function. We therefore examined the relationship between hippocampal integrity, volume, and memory performance long after first-ever ischemic stroke in young adults. METHODS: We included all consecutive first-ever ischemic stroke patients, without hippocampal strokes or recurrent stroke/TIA, aged 18-50 years, admitted to our academic hospital between 1980 and 2010. One hundred and forty-six patients underwent T1 MPRAGE, DTI scanning and completed the Rey Auditory Verbal Learning Test and were compared with 84 stroke-free controls. After manual correction of hippocampal automatic segmentation, we calculated mean hippocampal fractional anisotropy (FA) and diffusivity (MD). RESULTS: On average 10 years after ischemic stroke, lesion volume was associated with lower ipsilateral hippocampal integrity (p0.05). CONCLUSIONS: Patients with average ipsilateral hippocampal volume could already have lower ipsilateral hippocampal integrity, although at present with no attendant worse memory performance compared with patients with high hippocampal integrity. Longitudinal studies are needed to investigate whether a low hippocampal integrity after stroke might lead to exacerbated memory decline with increasing age.This study was funded by the Dutch Epilepsy Fund (grant 10–18)

    Risk factors and prognosis of young stroke. The FUTURE study: A prospective cohort study. Study rationale and protocol

    Get PDF
    Contains fulltext : 98322.pdf (postprint version ) (Open Access)BACKGROUND: Young stroke can have devastating consequences with respect to quality of life, the ability to work, plan or run a family, and participate in social life. Better insight into risk factors and the long-term prognosis is extremely important, especially in young stroke patients with a life expectancy of decades. To date, detailed information on risk factors and the long-term prognosis in young stroke patients, and more specific risk of mortality or recurrent vascular events, remains scarce. METHODS/DESIGN: The FUTURE study is a prospective cohort study on risk factors and prognosis of young ischemic and hemorrhagic stroke among 1006 patients, aged 18-50 years, included in our study database between 1-1-1980 and 1-11-2010. Follow-up visits at our research centre take place from the end of 2009 until the end of 2011. Control subjects will be recruited among the patients' spouses, relatives or social environment. Information on mortality and incident vascular events will be retrieved via structured questionnaires. In addition, participants are invited to the research centre to undergo an extensive sub study including MRI. DISCUSSION: The FUTURE study has the potential to make an important contribution to increase the knowledge on risk factors and long-term prognosis in young stroke patients. Our study differs from previous studies by having a maximal follow-up of more than 30 years, including not only TIA and ischemic stroke but also hemorrhagic stroke, the addition of healthy controls and prospectively collect data during an extensive follow-up visit. Completion of the FUTURE study may provide better information for treating physicians and patients with respect to the prognosis of young stroke.8 p

    Genetic risk, incident stroke, and the benefits of adhering to a healthy lifestyle: cohort study of 306 473 UK Biobank participants.

    Get PDF
    OBJECTIVE: To evaluate the associations of a polygenic risk score and healthy lifestyle with incident stroke. DESIGN: Prospective population based cohort study. SETTING: UK Biobank Study, UK. PARTICIPANTS: 306 473 men and women, aged 40-73 years, recruited between 2006 and 2010. MAIN OUTCOME MEASURE: Hazard ratios for a first stroke, estimated using Cox regression. A polygenic risk score of 90 single nucleotide polymorphisms previously associated with stroke was constructed at P<1×10-5 to test for an association with incident stroke. Adherence to a healthy lifestyle was determined on the basis of four factors: non-smoker, healthy diet, body mass index <30 kg/m2, and regular physical exercise. RESULTS: During a median follow-up of 7.1 years (2 138 443 person years), 2077 incident strokes (1541 ischaemic stroke, 287 intracerebral haemorrhage, and 249 subarachnoid haemorrhage) were ascertained. The risk of incident stroke was 35% higher among those at high genetic risk (top third of polygenic score) compared with those at low genetic risk (bottom third): hazard ratio 1.35 (95% confidence interval 1.21 to 1.50), P=3.9×10-8. Unfavourable lifestyle (0 or 1 healthy lifestyle factors) was associated with a 66% increased risk of stroke compared with a favourable lifestyle (3 or 4 healthy lifestyle factors): 1.66 (1.45 to 1.89), P=1.19×10-13. The association with lifestyle was independent of genetic risk stratums. CONCLUSION: In this cohort study, genetic and lifestyle factors were independently associated with incident stroke. These results emphasise the benefit of entire populations adhering to a healthy lifestyle, independent of genetic risk
    corecore